1. Histogram classifiers vs. Tree classifiers. Consider the following set-up. Let $\mathcal{X} = [0, 1]^2$, $\mathcal{Y} = \{0, 1\}$, and suppose we are given n iid training examples $\{X_i, Y_i\}$. Furthermore, assume that the Bayes classifier is $1_{\eta(x) > 1/2}$, where $\eta(x) = P(Y = 1|X = x)$. Assume that the boundary of the Bayes decision region is a non-fractal, 1-d curve. Specifically, assume that the boundary has box-counting dimension 1. This means that if we divide the unit square into m^2 boxes, each of side-length $1/m$, then the number of boxes that the boundary intersects is bounded by Cm, for some constant $C > 0$ and for every positive integer m.

a. Using the fact that the Bayes decision boundary has box-counting dimension 1, prove that the histogram classifier selected according to the complexity regularization procedure described in class converges to the Bayes classifier at rate of at least $n^{-1/4}$.

Hint: Consider a histogram classifier with m^2 boxes, each of sidelength $1/m$, apply the risk bound we derived in class, and minimize with respect to m.

b. Prove that the dyadic tree classifier selected according to the complexity regularization procedure described in class converges to the Bayes classifier at rate of at least $n^{-1/3}$.

Hint: Begin by considering the partition associated with the histogram classifier with m^2 boxes, where m is a power of 2. Prove that there exists a pruned dyadic partition with at most $8Cm$ regions such that the Bayes decision boundary is completely contained in small boxes of sidelength $1/m$. Finish by applying the risk bound from class in this case and optimizing over choice of m.

2. Complexity regularization in regression. Consider learning under squared error loss. Suppose we have n iid training examples $\{X_i, Y_i\}_{i=1}^n$ and a collection \mathcal{F} of candidate functions mapping $\mathcal{X} = \mathbb{R}^d$ to $\mathcal{Y} = \mathbb{R}$. Assume that the support of the Y_i and the range of the candidate functions $f \in \mathcal{F}$ is in a known interval of length b. Our empirical and true risks are given by

\[
\hat{R}_n(f) = \frac{1}{n} \sum_{i=1}^n (f(X_i) - Y_i)^2
\]

\[
R(f) = E[(f(X) - Y)^2] = \frac{1}{n} \sum_{i=1}^n E[(f(X_i) - Y_i)^2]
\]

Notice that we can write $R(f) - \hat{R}_n(f) = \frac{1}{n} \sum_{i=1}^n (U_i - E[U_i])$, where $U_i = (f(X_i) - Y_i)^2$. Assume that we have the following concentration inequalities for $\sum_{i=1}^n (U_i - E[U_i])$:

\[
P\left(\sum_{i=1}^n (U_i - E[U_i]) > \epsilon\right) \leq e^{-\epsilon}
\]

Select a model from \mathcal{F} according to

\[
\hat{f}_n = \arg\max_{f \in \mathcal{F}} \left\{ \hat{R}_n(f) + \frac{c(f) \log 2}{n} \right\}
\]

where $\{c(f)\}$ are positive numbers satisfying $\sum_{f \in \mathcal{F}} 2^{-c(f)} \leq 1$. Using the concentration inequalities above and mimicking the derivation of the risk bound for complexity regularized classifier selection in Lecture 10, prove that

\[
E[R(\hat{f}_n)] \leq \min_{f \in \mathcal{F}} \left\{ R(f) + \frac{c(f) \log 2}{n} \right\} + \frac{\log n + b^2 + 1}{n}
\]

Compare this result to the bound one obtains using Hoeffding’s inequality

\[
P\left(\sum_{i=1}^n (U_i - E[U_i]) > \epsilon\right) \leq e^{-2\epsilon^2/n} \quad \text{and} \quad P\left(\sum_{i=1}^n (E[U_i] - U_i) > \epsilon\right) \leq e^{-2\epsilon^2/n}
\]