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1 Introduction

Consider the problem of estimating a signal from noisy samples. The conven-
tional approach (e.g., Shannon-Nyquist sampling) is to sample at many locations
in a non-adaptive and more-or-less uniform manner. For example, in a digital
camera we collect samples at locations on a square lattice (each sample being
a pixel). Under certain scenarios though there is an extra flexibility, and an
alternative and more versatile approach is possible: choose the sample locations
‘on-the-fly’, depending on the information collected up to that time. This is
what we call adaptive sampling, as opposed to the conventional approach, re-
ferred to here as passive sampling. Although intuitively very appealing, adaptive
sampling is seldom used because of the difficulty of design and analysis of such
feedback techniques, especially in complex settings.

The topic of adaptive sampling, or active learning as it is sometimes called,
has attracted significant attention from various research communities, in partic-
ular in the fields of computer science and statistics. A large body of work exists
proposing algorithmic ideas and methods [1, 2, 3, 4, 5], but unfortunately there
are few performance guarantees for many of those methods. Further most of
those results take place in very special or restricted scenarios (e.g., absence of
noise or uncertainty, yielding perfect decisions). Under the adaptive sampling
framework there are a few interesting theoretical results, some of which are pre-
sented here, namely the pioneering work of [6] regarding the estimation of step
functions, that was later rediscovered in [7] using different algorithmic ideas and
tools. Building on some of those ideas, the work in [8, 9, 10, 11] provides per-
formance guarantees for function estimation under noisy conditions, for several
function classes that are particularly relevant to signal processing and analysis.

In this chapter we provide an introduction to adaptive sampling techniques
for signal estimation, both in parametric and non-parametric settings. Note
that the scenarios we consider do not have the Markovian structure inherent to
the Markov Decision Processes (MDPs), that are the topic of many chapters in
this book, and that the ‘actions’ (sample locations, or whether or not to collect
a sample) do not affect the environment. Another major difference between the
active learning problems considered and the MDPs is that, in the former, the
set of possible actions/sample locations is generally uncountable.
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We begin this chapter with some concrete applications that motivate active
learning problems. Section 2 tackles a simple one-dimensional problem that
sheds some light on the potential of the active learning framework. In Section 3
we consider higher dimensional function estimation problems, that are more
relevant in practical scenarios. Finally in Section 4 some final thoughts and
open questions are presented.

1.1 Some Motivation Examples

When trying to learn a new concept, for example, asking someone to describe
a scene or a painting, one usually asks questions in a sequential way, just as
playing the twenty questions game. One can start by asking if the scene is
outdoors, in case the answer is affirmative if there is sky depicted in the scene,
if it is overcast or clear, et cetera. Note that a key feature of this scheme is
the feedback between the learner and the world. On the other hand, most
imaging techniques pursue a completely different approach: all the ‘questions’
are asked in bulk. A digital scanner will give you the value of every pixel in
the scene, regardless of the image, essentially by scanning the entire painting
at the finest achievable resolution. If scanning time is a critical asset then this
approach can be extremely inefficient. If it is known that the scene in question
has some nice properties one can accelerate the scanning process by selectively
choosing were to scan. To be more concrete consider an airborne laser scanning
sensor. This kind of sensor is able to measure range (distance between sensor
and observed object) and maybe some properties of the object (e.g., the type of
terrain: vegetation, sand, rock, et cetera). Suppose we want to use such a setup
to construct a topographic map of a field, possibly an hostile environment (e.g.,
a battlefield). For a variety of considerations (safety concerns, fuel costs, et
cetera, we would like to limit the time of flight. Figure 1 illustrates the scenario.
In this case the field is reasonably “flat”, except for a ledge. Clearly, to estimate
the topography of the “flat” regions a low resolution scanning would suffice, but
to accurately locate the ledge area a higher resolution scanning is needed. If we
are pursuing a non-adaptive sampling approach then we need to scan the entire
field at the highest resolution, otherwise the ledge area might be inaccurately
estimated. On the other hand, if an adaptive sampling technique is used then
we can adapt our resolution to the field (based on our observations), thereby
focusing the sampling procedure on the ledge area.

There are also other problems that share common characteristics with adap-
tive sampling, and that are in a sense dual problems. When the computational
power is a critical asset (or the computation time is very expensive) one wants
to focus the bulk of computation on tasks that are somehow more important
(more rewarding). This is the case with most imaging systems (e.g., satellite
imaging): although we may face very few restrictions on the total amount of
data collected, the subsequent processing of vast amounts of data can be exces-
sively time consuming, therefore carefully choosing “where to look” during the
processing phase can lead to significant computational savings. For example, in
[12] some of the ideas/techniques of this chapter are applied to the construction
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Figure 1: Airborne range sensor surveying a terrain.

of fast algorithms for image noise removal.

2 A Simple One-dimensional Problem

In this section we consider the adaptive sampling problem, essentially motivated
by the laser scanning scenario. To gain some insight about the power of adaptive
sampling we start with a simple, perhaps “toyish” problem. Consider estimating
a step function from noisy samples. This problem boils down to locating the
step location. Adaptively sampling aims to find this location with a minimal
number of strategically placed samples.

Formally, we define the step function class

F = {f : [0, 1]→ R|f(x) = 1[0,θ)(x)},

where θ ∈ [0, 1]. This is a parametric class, where each function is characterized
by the transition point θ. Given an unknown function fθ ∈ F our goal is to
estimate θ from n point samples. We will work under the following assumptions.

A1.1 - The observations {Yi}ni=1 are point samples of the unknown function
fθ, taken at sample locations {Xi}ni=1. These are corrupted by noise,
that is with probability p we observe a 1 instead of a zero, and vice-versa.
Formally

Yi =
{

fθ(Xi) , with probability 1− p
1− fθ(Xi) , with probability p = f(Xi)⊕ Ui,
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where fθ ∈ F , ⊕ represents a sumation modulo 2 and Ui ∈ {0, 1} are
Bernoulli random variables, with parameter 0 ≤ p < 1/2, independent
and identically distributed (i.i.d.), and independent of {Xj}nj=1.

A2.1 - Non-Adaptive Sampling: The sample locations Xi are independent
of {Yj}j 6=i.

A2.2 - Adaptive Sampling: The sampling location Xi depends only on
{Xj , Yj}j<i. To be more specific let µi be a density defined as

µi(X1, . . . , Xi−1, Y1, . . . , Yi−1).

Finally let Xi be a sample taking according to this density. µi is called
the sampling strategy, and completely defines our sampling schedule.

Under the non-adaptive sampling scenario (A2.1) the sample locations do
not depend in any way on our observations, therefore the collection of sample
points {Xi}ni=1 can be chosen before any observations are collected. On the
other hand, the adaptive sampling scenario (A2.2) allows for the ith sample
location to be chosen using all the information collected up to that point (the
previous i− 1 samples). In either case, our goal is to construct an estimate θ̂n
that is “close” to θ, using n samples, where close means that supθ∈[0,1] |θ̂n − θ|
is small.

Consider first the case when there is no noise, that is, p = 0. Under the
non-adaptive scenario (A2.1) the best we can hope to do is

sup
θ∈[0,1]

|θ̂n − θ| ≤
1

2(n+ 1)
.

This is achieved distributing the sample locations on a uniform grid over the
interval [0, 1],

{Xi}ni=1 =
{

1
n+ 1

,
2

n+ 1
, · · · , n

n+ 1

}
. (1)

Any sample arrangement is going to induce a partition of the interval into n+ 1
intervals (unless there are overlapping samples), therefore we can only decide if
the true parameter θ is inside one of these intervals. The performance is limited
by the maximum size of these intervals (i.e., the bias of any estimate is limited by
the length of these intervals). Clearly the proposed sampling strategy is optimal
for passive samples, since any other arrangement of the sample locations (even
a randomized one) will lead to a possible degradation in performance.

Now suppose we are working under the adaptive scenario (A2.2). In this
situation one can focus on θ much more effectively, using binary bisection: start
by taking the first sample at X1 = 1/2. Since there is no noise our observation
is simply Y1 = f(X1). If Y1 = 0 then we know that θ ∈ [0, 1/2] and if Y1 = 1
then θ ∈ (1/2, 1]. We choose X2 accordingly: If Y1 = 0 then take X2 = 1/4
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and if Y1 = 1 take X2 = 3/4. We proceed according to this technique, always
bisecting the set of possibilities. It is easy to see that

sup
θ∈[0,1]

|θ̂n − θ| ≤ 2−(n+1).

This is clearly the best one can hope for with this measurement scheme: each
measurement provides one bit of information, and with n bits we can encode
the value of θ only up to the above accuracy.

If there is noise (i.e., p > 0) the techniques one would use to estimate
θ have to be modified appropriately. If we are working in the non-adaptive
setup (A2.1) there is no reason to change the sampling scheme. We already
know that our performance is going to be limited by 1/(2(n + 1)), because of
our sampling strategy. To perform the estimation we can use the Maximum
Likelihood Estimator (MLE). Define

Sn(θ) =
∑

i:Xi<θ

Yi +
∑

i:Xi≥θ

1− Yi.

The MLE estimator of θ is given by

θ̂n ≡ arg min
θ∈[0,1)

{
(1− p)n−Sn(θ) pSn(θ)

}
= arg max

θ∈[0,1)
Sn(θ).

Clearly this optimization has more than one solution, since the value of the like-
lihood is the same for all θ ∈ (Xi, Xi+1]. For our purposes one can reduce the
search to the midpoints of these intervals (i.e., θ̂ ∈

{
1

2(n+1) ,
3

2(n+1) , · · · ,
2n−1

2(n+1)

}
).

It can be shown that this estimator performs optimally, in the sense that

sup
θ∈[0,1]

E[|θ̂n − θ|] ≤ C(p)
1

n+ 1
,

where C(p) is an increasing function of p. The derivation of the above result is
not at all trivial, and can be accomplished using the oracle bounds presented
in [13]. Note that the expected error of this estimator behaves like 1/n, the
same behavior one has when there is no noise present, therefore the maximum
likelihood estimator is optimal in this case (up to a constant factor).

If we are working under the adaptive framework, dealing with noise makes
things significantly more complicated, in part because our decisions about the
sampling depend on all the observations made in the past, which are noisy
and therefore unreliable. Nevertheless there is a probabilistic bisection method,
proposed in [14], that is suitable for this purpose. The key idea stems from
Bayesian estimation. Suppose that we have a prior probability density function
P0(x) on the unknown parameter θ, namely that θ is uniformly distributed over
the interval [0, 1] (that is P0(x) = 1 for all x ∈ [0, 1]). To make the exposition
clear assume a particular situation, namely that θ = 1/4. Like before, we start
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by taking a measurement at X1 = 1/2. With probability 1 − p we correctly
observe a zero, and with probability p we incorrectly observe a one. Suppose
a zero was observed. Given these facts we can compute the posterior density
simply by applying Bayes rule. In this case we would get that

P1(x|X1, Y1) =
{

2(1− p) , if x ≤ 1/2,
2p , if x > 1/2, .

The next step is to choose the sample location X2. We choose X2 so that is
bisects the posterior distribution, that is, we take X2 such that Prθ∼P1(·)(θ >
X2|X1, Y1) = Prθ∼P1(·)(θ < X2|X1, Y1). In other words X2 is just the median
of the posterior distribution. If our model is correct, the probability of the
event {θ < X2} is identical to the probability of the event {θ > X2}, and
therefore sampling Y2 at X2 is most informative. We continue iterating this
procedure until we have collected n samples. The estimate θ̂n is defined as the
median of the final posterior distribution. Figure 3 illustrates the procedure
and the algorithmic details are described in Figure 2. Note that if p = 0 then
probabilistic bisection is simply the binary bisection described above.

The above algorithm seems to work extremely well in practice, but it is hard
to analyze and there are few theoretical guarantees for it, especially pertaining
error rates of convergence. In [6] a similar algorithm was proposed. Albeit its
operation is slightly more complicated, it is easier to analyze. That algorithm
(which we denote by BZ) uses essentially the same ideas, but enforces a para-
metric structure for the posterior. Also, in the application of the Bayes rule we
use α instead of p, where 0 < α < p. The algorithm is detailed in Figure 4.

Pertaining the BZ algorithm we have the following remarkable result.

Theorem 1. Under the assumptions (A1.1) and (A2.2) the Burnashev-Zigangirov
algorithm (Figure 2) satisfies

sup
θ∈[0,1]

Pr(|θ̂n − θ| > ∆) ≤ 1−∆
∆

(
1− p

2(1− α)
+

p

2α

)n
.

Taking ∆−1 =
(

1−p
2(1−α) + p

2α

)−n/2
yields a bound on the expected error

sup
θ∈[0,1]

E[|θ̂n − θ|] ≤ 2
(

1− p
2(1− α)

+
p

2α

)−n/2
.

Finally, taking α =
√
p/(
√
p+
√
q) minimizes the right hand side of these bounds,

yielding

sup
θ∈[0,1]

E[|θ̂n − θ|] ≤ 2
(

1
2

+
√
p(1− p)

)n/2
.

Remarks: The above theorem shows that, even under noisy assumptions,
there is a dramatic improvement in performance if one allows adaptive strategies
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Initialization: Define the prior probability density function as P0 : [0, 1]→ R, P0(x) =
1 for all x ∈ [0, 1].

1 - Sample Selection after i samples were collected: Define Xi+1 to be the median
of the posterior Pi. That is Xi+1 ∈ [0, 1] satisfiesZ Xi+1

0
Pi(x)dx = 1/2.

2 - Noisy Observation: Observe Yi+1 = f(Xi+1)⊕ Ui+1.

3 - Update posterior: Update the posterior function. This is simply the application of
Bayes rule. If Yi+1 = 0 then

Pi+1(x) =


2(1− p)Pi(x) if x ≤ Xi+1

2pPi(x) if x > Xi+1
.

If Yi+1 = 1 then

Pi+1(x) =


2pPi(x) if x ≤ Xi+1

2(1− p)Pi(x) if x > Xi+1
.

4 - Final estimate: Repeat steps 1,2 and 3 until n samples are collected. The estimate
θ̂n is defined as the median of the final posterior distribution, that is, bθn is such thatZ bθn

0
Pn(x)dx = 1/2.

Figure 2: The probabilistic bisection algorithm.

(as opposed to passive strategies). Although the bounds display the exponential
error decay behavior, also present in the noiseless scenario, the exponent depends
on the noise parameter p, and it is clearly not optimal, since when p ≈ 0 we
would expect to obtain approximately the noiseless error bounds (i.e., E[|θ̂n −
θ|] ∼ (1/2)n). Instead a weaker bound is attained, E[|θ̂n − θ|] ∼ (

√
2/2)n.

It is possible to improve on this bounds by modifying the bounding strategy
(as done in [6]). Finally, we note that although this result was derived for a
particular noise model the result is applicable to other noise models. This can
be done either by processing the observations, using a thresholding operator,
or by modifying the likelihood structure (according to the noise model) in the
proof of the Theorem).

The proof of Theorem 1 is extremely elegant and is presented below. The
ideas in the proof can be used in various other contexts where feedback is present.

Proof of Theorem 1. For the proof we rely on the notation in the algorithm
given in Figure 4. In particular recall that the unit interval is divided into subin-
tervals of width ∆, ai(j) denotes the posterior probability that the changepoint
θ is located in the i-th subinterval after the j-th sample, and θ̂j denotes the
median of the posterior after j samples.

Our first step is to construct an upper bound for the probability Pr(|θ̂n−θ| >
∆). Let θ be fixed, but arbitrary, and define k(θ) to be the index of the bin Ii
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Figure 3: Illustration of the probabilistic bisection strategy. The shaded areas
correspond to 1/2 of the probability mass of the posterior densities.

containing θ, that is θ ∈ Ik(θ). Define

Mθ(j) =
1− ak(θ)(j)
ak(θ)(j)

,

and

Nθ(j + 1) =
Mθ(j + 1)
Mθ(j)

=
ak(θ)(j)(1− ak(θ)(j + 1))
ak(θ)(j + 1)(1− ak(θ)(j))

.

The reasoning behind these definitions is made clear later. For now, notice that
Mθ(j) is a decreasing function of ak(θ)(j).

After n observations our estimate of θ is the median of the posterior density
Pn, which means that θ̂n ∈ Ik(n). Taking that into account we conclude that

Pr(|θ̂n − θ| > ∆) ≤ Pr(ak(θ)(j) < 1/2)
= Pr(Mθ(n) > 1)
≤ E[Mθ(n)],
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Initialization: Let ∆ > 0 be such that ∆−1 ∈ N. Define the posterior after j
measurements as Pj : [0, 1]→ R,

Pj(x) = ∆−1
∆−1X
i=2

ai(j)1Ii (x),

where I1 = [0,∆] and Ii = (∆(i − 1),∆i], for i ∈ {2, . . . ,∆−1}. Notice that
the collection {Ii} is a partition of the interval [0, 1]. We initialize this poste-
rior by taking ai(0) = ∆. Note that the posterior is completely characterized by

a(j) = {a1(j), . . . , a∆−1 (j)}, and that
P∆−1

i=1 ai(j) = 1.

1 - Sample Selection: To preserve the parametric structure of the pseudo-posterior we
need to take samples at the interval subdivision points. Define k(j) such that

k(j)−1X
i=1

ai(j) ≤ 1/2,

k(j)X
i=1

ai(j) > 1/2.

Note that k(j) ∈ {1, . . . ,∆−1}. Select Xj+1 among {∆(k(j)− 1),∆k(j)} by flipping a
coin, choosing the first point with probability π1(j) and the second point with proba-
bility π2(j) = 1− π1(j), where π1(j) = τ2(j)/(τ1(j) + τ2(j)) and

τ1(j) =
∆−1X
i=k(j)

ai(j)−
k(j)−1X
i=1

ai(j),

and

τ2(j) =

k(j)X
i=1

ai(j)−
∆−1X

i=k(j)+1

ai(j).

2 - Noisy Observation: Observe Yj+1 = f(Xj+1)⊕ Uj+1.

3 - Update posterior: Update the posterior function after collecting the measurement
Yj+1, through the application of Bayes rule, under the assumption that the Bernoulli
random variables Uj+1 have parameter 0 ≤ α < 1/2. Let β = 1 − α. Note that
Xj+1 = ∆k, k ∈ N and define

τ =

kX
i=1

ai(j)−
∆−1X
i=k+1

ai(j).

If i ≤ k we have

ai(j + 1) =

(
2β

1+τ(β−α)
if Yj+1 = 0

2α
1−τ(β−α)

if Yj+1 = 1
,

and if i > k we have

ai(j + 1) =

(
2α

1+τ(β−α)
if Yj+1 = 0

2β
1−τ(β−α)

if Yj+1 = 1
,

4 - Final estimate: Repeat steps 1,2 and 3 until n samples are collected. The estimate
θ̂n is defined as the median of the final posterior distribution, that is, bθn is such thatZ bθn

0
Pn(x)dx = 1/2.

Figure 4: The Burnashev-Zigangirov (BZ) algorithm.
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where the last step follows from Markov’s inequality. The definition of Mθ(j)
above is meant to get more leverage out of Markov’s inequality, in a similar
spirit of Chernoff bounding techniques. Using the definition of Nθ(j) and some
conditioning we get

E[Mθ(n)] = E[Mθ(n− 1)Nθ(n)]
= E [E[Mθ(n− 1)Nθ(n)|a(n− 1)]]
= E [Mθ(n− 1)E[Nθ(n)|a(n− 1)]]
...
= Mθ(0)E [E[Nθ(1)|a(0)] · · ·E[Nθ(n)|a(n− 1)]]

≤ Mθ(0)
{

max
j∈{0,...,n−1}

max
a(j)

E[Nθ(j + 1)|a(j)]
}n

. (2)

The rest of the proof consists of showing that E[Nθ(j + 1)|aj ] ≤ 1 − ε,
for some ε > 0. Before proceeding we make some remarks about the above
technique. Note that Mθ(j) measures how much mass is on the bin containing
θ (if Mθ(j) = 0 all the mass in our posterior is in the bin containing θ, the least
error scenario). The ratio Nθ(j) is a measure of the improvement (in terms of
concentrating the posterior around the bin containing θ) by sampling at Xj

and observing Yj . This is strictly less than one when an improvement is made.
The bound (2) above is therefore only useful if, no matter what happened in
the past, a measurement made with the proposed algorithm always leads on
average to a performance improvement. This is the case with a variety of other
useful myopic algorithms.

To study E[Nθ(j + 1)|a(j)] we are going to consider three particular cases:
(i) k(j) = k(θ); (ii) k(j) > k(θ); and (iii) k(j) < k(θ). Let β = 1 − α and
q = 1− p. After tedious but straightforward algebra we conclude that

Nθ(j + 1) =

{
1+(β−α)x

2β , with probability q
1−(β−α)x

2α , with probability p
,

where we have for the three different cases

i)

x =


τ1(j)−ak(θ)(j)

1−ak(θ)(j)
, if Xj+1 = ∆(k(j)− 1)

τ2(j)−ak(θ)(j)
1−ak(θ)(j)

, if Xj+1 = ∆k(j)

ii)

x =

 −
τ1(j)+ak(θ)(j)

1−ak(θ)(j)
, if Xj+1 = ∆(k(j)− 1)

τ2(j)−ak(θ)(j)
1−ak(θ)(j)

, if Xj+1 = ∆k(j)

iii)

x =


τ1(j)−ak(θ)(j)

1−ak(θ)(j)
, if Xj+1 = ∆(k(j)− 1)

− τ2(j)+ak(θ)(j)

1−ak(θ)(j)
, if Xj+1 = ∆k(j)
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Note that 0 ≤ τ1(j) ≤ 1 and 0 < τ2(j) ≤ 1, therefore |x| ≤ 1. To ease the
notation define

g(x) =
q

2β
(1 + (β − α)x) +

p

2α
(1− (β − α)x)

=
q

2β
+

p

2α
+
(
q

2β
− p

2α

)
(β − α)x.

It can be easily checked that g(x) is an increasing function as long as 0 < α < p.
Using this definition we have

i)

E[Nθ(j + 1)|a(j)]

= π1(j)g
(
τ1(j)− ak(θ)(j)

1− ak(θ)(j)

)
+ π2(j)g

(
τ2(j)− ak(θ)(j)

1− ak(θ)(j)

)

ii)

E[Nθ(j + 1)|a(j)]

= π1(j)g
(
−
τ1(j) + ak(θ)(j)

1− ak(θ)(j)

)
+ π2(j)g

(
τ2(j)− ak(θ)(j)

1− ak(θ)(j)

)

iii)

E[Nθ(j + 1)|a(j)]

= π1(j)g
(
τ1(j)− ak(θ)(j)

1− ak(θ)(j)

)
+ π2(j)g

(
−
τ2(j) + ak(θ)(j)

1− ak(θ)(j)

)

Consider first cases (ii) and (iii). Note that (τ − a)/(1 − a) ≤ τ and −(τ +
a)/(1− a) < −τ for all 0 < a < 1. Therefore, for case (ii) we have

E[Nθ(j + 1)|a(j)] ≤ π1(j)g(−τ1(j)) + π2(j)g(τ2(j))

=
q

2β
+

p

2α
+
(
q

2β
− p

2α

)
(β − α)(−π1(j)τ1 + π2(j)τ2)

=
q

2β
+

p

2α
.

Analogously, for case (iii)

E[Nθ(j + 1)|a(j)] ≤ π1(j)g(τ1(j)) + π2(j)g(−τ2(j))

=
q

2β
+

p

2α
+
(
q

2β
− p

2α

)
(β − α)(π1(j)τ1 − π2(j)τ2)

=
q

2β
+

p

2α
.
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Finally, for case (i) a we need to proceed in a slightly different way. Begin by
noticing that τ1(j) + τ2(j) = 2ak(j)(j) = 2ak(θ)(j). Then

E[Nθ(j + 1)|a(j)]

= π1(j)g
(
τ1(j)− ak(θ)(j)

1− ak(θ)(j)

)
+ π2(j)g

(
−
τ1(j)− ak(θ)(j)

1− ak(θ)(j)

)
=

q

2β
+

p

2α
+
(
q

2β
− p

2α

)
(β − α)

τ1 − ak(θ)(j)
1− ak(θ)(j)

(π1(j)− π2(j))

=
q

2β
+

p

2α
+
(
q

2β
− p

2α

)
(β − α)

τ1 − ak(θ)(j)
1− ak(θ)(j)

τ2(j) + τ1(j)
τ1(j) + τ2(j)

=
q

2β
+

p

2α
+
(
q

2β
− p

2α

)
(β − α)

τ1 − ak(θ)(j)
1− ak(θ)(j)

2ak(θ)(j)− 2τ1(j)
τ1(j) + τ2(j)

≤ q

2β
+

p

2α

Plugging in the above results into (2) yields

Pr(|θ̂n − θ| > ∆) ≤ 1−∆
∆

(
q

2β
+

p

2α

)n
,

since Mθ(0) = (1−∆)/∆.
To get a bound on the expected error one proceeds by integration

E[|θ̂n − θ|] =
∫ ∞

0

Pr(|θ̂n − θ| > t)dt

=
∫ ∆

0

Pr(|θ̂n − θ| > t)dt+
∫ 1

∆

Pr(|θ̂n − θ| > t)dt

≤ ∆ + (1−∆) Pr(|θ̂n − θ| > ∆)

≤ ∆ +
(1−∆)2

∆

(
q

2β
+

p

2α

)n
.

Choosing ∆ as in the statement of the theorem yields the desired result, con-
cluding the proof. �

3 Beyond 1d - Piecewise Constant Function Es-
timation

In this section we consider again the adaptive sampling scenario, but now in a
higher dimensional setting. The one-dimensional setup in the previous section
provided us with some insight about the possibilities of active learning, but it is
quite restrictive: (i) the function is known up to the location of the step, that is,
we know the function takes the values 0 and 1. (ii) One dimensional piecewise
functions are extremely simple - they form a parametric class. Nevertheless
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even this simple type of problem can arise in some practical applications [15].
The kinds of functions we are going to consider next are generally higher dimen-
sional, as in the case of laser field scanning, where the field can be described by
a two dimensional function. Also the only prior knowledge we have about these
functions is that they are piecewise “smooth”, that is, these are composed of
smooth regions (where the function varies slowly) separated by low dimensional
boundary regions (where the function might change abruptly). One expects ac-
tive learning to be advantageous for such function classes, since the complexity
of such functions is concentrated around the boundary. Pin-pointing the bound-
ary requires many more samples than estimation of the smooth regions so using
the active learning paradigm it might be possible to focus most of the samples
where they are needed: “near” the boundary. To make the description and
discussion simpler we will consider solely piecewise constant functions, whose
definition follows.

Definition 1. A function f : [0, 1]d → R is piecewise constant if it is locally
constant1 at any point x ∈ [0, 1]d\B(f), where B(f) ⊆ [0, 1]d is a set with upper
box-counting dimension at most d− 1. Furthermore let f be uniformly bounded
on [0, 1]d (that is, |f(x)| ≤ M, ∀x ∈ [0, 1]d) and let B(f) satisfy N(r) ≤
βr−(d−1) for all r > 0, where β > 0 is a constant and N(r) is the minimal
number of closed balls of diameter r covering B(f). The set of all piecewise
constant functions f satisfying the above conditions is denoted by PC(β,M).

The concept of box-counting dimension is closely related to topological di-
mension. The condition on the number of covering balls is essentially a measure
of the d−1-dimensional volume of the boundary set. Example of such a functions
are depicted in Figures 5-7. Note that this class of functions is non-parametric.
These functions can provide a simple imaging model in various applications, for
example in medical imaging, where one observes various homogeneous regions
of tissue of differing densities.

In the rest of the paper we are also going to consider a slightly modified
observation model, namely the observations are going to be samples of the
function corrupted with additive white Gaussian noise.

A1.2 - The observations {Yi}ni=1 are given by

Yi = f(Xi) +Wi,

where f ∈ PC(β,M) and Wi are i.i.d. Gaussian random variables with
zero mean and variance σ2, and independent of {Xj}nj=1.

Under this framework we are mainly interested in answering two questions:

Q1 - What are the limitations of active learning, that is, what is the best
performance one can hope to achieve?

1A function f : [0, 1]d → R is locally constant at a point x ∈ [0, 1]d if

∃ε > 0 : ∀y ∈ [0, 1]d : ‖x− y‖ < ε ⇒ f(y) = f(x).

13



Q2 - Can a simple algorithm be devised such that the performance improves
on the performance of the best passive learning algorithm?

Before attempting to answer these two questions it is important to know what
are the limitations when the passive framework (A2.1) is considered. In [16] the
following minimax lower bound is presented.

inf
f̂n,Sn

sup
f∈PC(β,M)

E[‖f̂n − f‖2] ≥ cn− 1
d , (3)

where c > 0 and the infimum is taken with respect to every possible estimator
and sample arrangement Sn.

There exist practical passive learning strategies that can nearly achieve
the above performance bound. Tree-structured estimators based on Recursive
Dyadic Partitions (RDPs) are an example of such a learning strategy [17]. These
estimators are constructed as follows: (i) Divide [0, 1]d into 2d equal sized hy-
percubes. (ii) Repeat this process again on each hypercube. Repeating this
process log2m times gives rise to a partition of the unit hypercube into md

hypercubes of identical size. This process can be represented as a 2d-ary tree
structure (where a leaf of the tree corresponds to a partition cell). Pruning this
tree gives rise to an RDP with non-uniform resolution. Let Π denote the class of
all possible pruned RDPs. The estimators we consider consist of a stair function
supported over a RDP, that is, associated with each element in the partition
there is a constant value. Let π be an RDP; the estimators built over this RDP
have the form f̃ (π)(x) ≡

∑
A∈π cA1{x ∈ A}.

Since the location of the boundary is a priori unknown it is natural to
distribute the sample points uniformly over the unit cube. There are various
ways of doing this; for example, the points can be placed deterministically over a
lattice, or randomly sampled from a uniform distribution. We will use the latter
strategy. Let {Xi}ni=1 be i.i.d. uniform over [0, 1]d and define the complexity
regularized estimator as

f̂n ≡ arg min
f̃(π):π∈Π

{
1
n

n∑
i=1

(
f̃ (π)(Xi)− Yi

)2

+ λ
log n
n
|π|

}
, (4)

where |π| denotes the number of cells of π and λ > 0. The above optimization
can be solved efficiently in O(n) operations using a bottom-up tree pruning
algorithm [18, 17].

The performance of the estimator in (4) can be assessed using bounding
techniques in the spirit of [19, 17]. From that analysis we conclude that

sup
f∈PC(β,M)

Ef [‖f̂n − f‖2] ≤ C
(

n

log n

)− 1
d

, (5)

where the constant factor C ≡ C(β,M, σ2) > 0. This shows that, up to a
logarithmic factor, the rate in (3) is the optimal rate of convergence for passive
strategies. A complete derivation of the above result is available in [20].
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We now turn our attention to the active learning framework (A2.2). To
address question (Q1) we will consider a subclass of the piecewise constant
functions defined above, called the boundary fragments. Let g : [0, 1]d−1 → [0, 1]
be a Lipshitz function, that is

|g(x)− g(z)| ≤ ‖x− z‖, ∀ x, z ∈ [0, 1]d−1.

Define
G = {(x, y) : 0 ≤ y ≤ g(x), (x, y) ∈ [0, 1]d}, (6)

and let f : [0, 1]d → R be defined as f(x) = M1G(x). The class of all functions
of this form is called the boundary fragment class (usually taking M = 1),
denoted by BF(M). An example of a boundary fragment function is depicted
in Figure 5(a). It is straightforward to to show that BF(M) ⊆ PC(β,M), for a
suitable constant β. In [8] it was shown that under (A1.2) and A(2.2) we have
the lower bound

inf
f̂n,Sn

sup
f∈BF(M)

E[‖f̂n − f‖2] ≥ cn−
1
d−1 ,

for n large enough, where c ≡ c(M,σ2) > 0, and the infimum is taken with
respect to every possible estimator and sampling strategy. Since BF(M) ⊆
PC(β,M) it follows that

inf
f̂n,Sn

sup
f∈PC(β,M)

E[‖f̂n − f‖2] ≥ cn−
1
d−1 , (7)

The above results are restricted to d ≥ 2. Note that the error rates for
the adaptive sampling framework display very significant improvement. For
example, for d = 2 the passive learning error rate is O(1/

√
(n)), which is sig-

nificantly slower that the active learning error rate of O(1/n). Note that, for
this two-dimensional case, the active learning rate coincides with the classical
parametric rate, although this class of functions is non-parametric. In [8] an
algorithm capable of achieving the above rate for the boundary fragment class
is also presented. This algorithm takes advantage of the very special functional
form of the boundary fragment functions. The algorithmic idea is very simply:
begin by dividing the unit hypercube into O(n/ log(n)) “strips” and perform
a one-dimensional change-point estimation in each of the strips (using the BZ
algorithm with log(n) samples). This process is illustrated in Figure 5(b).

Unfortunately, the boundary fragment class is very restrictive and imprac-
tical for most applications. Recall that boundary fragments consist of only two
regions, separated by a boundary that is a function of the first d−1 coordinates.
For a general piecewise constant function the boundaries oriented arbitrarily
and generally are not aligned with any coordinate axis such that they can be
described in a functional way. The class PC(β,M) is much larger and more gen-
eral, so the algorithmic ideas that work for boundary fragments can no longer
be used. A completely different approach is required, using radically different
tools.
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(a) (b)

Figure 5: (a) Illustration of a boundary fragment function for d = 2. (b)
Adaptive sampling for boundary fragments. In each vertical stripe one uses
the BZ algorithm to estimate a step function. The final estimate is a piecewise
constant function whose boundary is a stair function.

We now attempt to answer question (Q2), by proposing an active learning
scheme for the piecewise constant class. The scheme is a two-step approach mo-
tivated by the tree-structured estimators for passive learning described above.
Although the ideas and intuition behind the approach are quite simple, the for-
mal analysis of the method is significantly difficult and cumbersome, therefore
the focus of the presentation is on the algorithm and sketch of the proofs, de-
ferring the details to the references. The main idea is to devise a strategy that
uses the first sampling step to find advantageous locations for new samples, to
be collected at the second step. More precisely in the first step, called the pre-
view step, a rough estimator of f is constructed using n/2 samples (assume for
simplicity that n is even), distributed uniformly over [0, 1]d. In the second step,
called the refinement step, we select n/2 samples near the perceived location
of the boundaries (estimated in the preview step) separating constant regions.
At the end of this process we will have half the samples concentrated in the
perceived vicinity of the boundary set B(f). Since accurately estimating f near
B(f) is key to obtaining faster rates, the strategy described seems quite sensible.
However, it is critical that the preview step is able to detect the boundary with
very high probability. If part of the boundary is missed, then the error incurred
is going to propagate into the final estimate, ultimately degrading the perfor-
mance. Conversely, if too many regions are (incorrectly) detected as boundary
locations in the preview step, then the second step will distribute samples too
liberally and no gains will be achieved. Therefore extreme care must be taken
to accurately detect the boundary in the preview step, as described below.

Preview: The goal of this stage is to provide a coarse estimate of the
location of B(f). Specifically, collect n′ ≡ n/2 samples at points distributed
uniformly over [0, 1]d. Next proceed by using the passive learning algorithm
described before, but restrict the estimator to RDPs with leafs at a maximum
depth of J = d−1

(d−1)2+d log(n′/ log(n′)). This ensures that, on average, every
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(a) (b) (c)

Figure 6: Illustration of the shifted RDP construction for d = 2: (a) RDP used
obtained from the preview step with the regular RDPs. The highlighted cell
intersects the boundary but it was pruned, since the pruning does not incur in
severe error. (b) Shifted RDP, Obtained from the preview step over vertically
shifted RDPs . In this case there is no pruning, since it would cause a large
error. (c) These are the cells that are going to be refined in the refinement stage.

element of the RDP contains many sample points; therefore we obtain a low
variance estimate, although the estimator bias is going to be large. In other
words, we obtain a very “stable” coarse estimate of f , where stable means that
the estimator does not change much for different realizations of the data. The
justification for the particular value of J arises in the formal analysis of the
method.

The above strategy ensures that most of the time, leafs that intersect the
boundary are at the maximum allowed depth (because otherwise the estimator
would incur too much empirical error) and leafs away from the boundary are at
shallower depths. Therefore we can “detect” the rough location of the boundary
just by looking at the deepest leafs. Unfortunately, if the set B(f) is somewhat
aligned with the dyadic splits of the RDP, leafs intersecting the boundary can
be pruned without incurring a large error. This is illustrated in Figure 7(b);
the cell with the arrow was pruned and contains a piece of the boundary, but
the error incurred by pruning is small since that region is mostly a constant
region. However, worst-case analysis reveals that the squared bias induced by
these small volumes can add up, precluding the desired improved performance.
A way of mitigating this issue is to consider multiple RDP-based estimators,
each one using RDPs appropriately shifted. We use d + 1 estimators in the
preview step: one on the initial uniform partition, and d over partitions whose
dyadic splits have been translated by 2−J in each one of the d coordinates. Any
leaf that is at the maximum depth on any of the d + 1 RDPs pruned in the
preview step indicates the highly probable presence of a boundary, and will be
refined in the next stage. This shifting strategy is illustrated in Figure 6

Refinement: With high probability, the boundary is contained in the leafs
at the maximum depth. In the refinement step we collect additional n/2 samples

17



(a) (b)

(c) (d)

Figure 7: The two step procedure for d = 2: (a) Initial unpruned RDP and
n/2 samples. (b) Preview step RDP. Note that the cell with the arrow was
pruned, but it contains a part of the boundary. (c) Additional sampling for the
refinement step. (d) Refinement step.

on the corresponding partition cells, using these to obtain a refined estimate of
the function f by applying again an RDP-based estimator. This produces a
higher resolution estimate in the vicinity of the boundary set B(f), yielding a
better performance than the passive learning technique.

The final estimator is constructed assembling the estimate “away” from the
boundary obtained in the preview step with the estimate in the vicinity of the
boundary obtained in the refinement step.

To formally show that this algorithm attains the faster rates we desire we
have to consider a further technical assumption, namely that the boundary set
is “cusp-free”2. This condition is rather technical, but it is not very restrictive,
and encompasses many interesting situations, including of course, boundary
fragments. This condition seems to be necessary for the algorithm to perform
well, and it is not simply an artifact of the proof. For a more detailed explanation
see [20]. Under this condition we have the following theorem.

2A cusp-free boundary cannot have the behavior you observe in the graph of |x|1/2 at the
origin. Less “aggressive” kinks are allowed, such as in the graph of |x|.
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Theorem 2. Under the active learning scenario (A1.2) and (A2.2) we have,
for d ≥ 2 and functions f whose boundary is cusp-free,

E
[
‖f̂n − f‖2

]
≤ C

(
n

log n

)− 1
d−1+1/d

, (8)

where C > 0.

This bound improves on (5), demonstrating that this technique performs
better than the best possible passive learning estimator. The proof of Theorem 2
is quite involved and is presented in detail in [20]. Below we present only a sketch
of the proof.

A couple of remarks are important at this point. Instead of a two-step
procedure one can iterate this algorithm, performing multiple steps (e.g., for
a three-step approach replace the refinement step with the two-step approach
described above). Doing so can further improve the performance. One can
show that the expected error will decay like n−1/(d−1+ε), with ε > 0, given a
sufficiently large number of steps. Therefore we can get rates arbitrarily close to
the lower bound rates in (7). These multi-step methods start to lack practical
usefulness if the number of steps is too large, since the practical benefits appear
only for a large number of samples. The two step procedure on the other hand
displays excellent performance under practical scenarios as seen in [21].

Proof of Theorem 2. The main idea behind the proof is to decompose the error
of the estimator for three different cases: (i) the error incurred during the pre-
view stage in regions “away” from the boundary; (ii) the error incurred by not
detecting a piece of the boundary (and therefore not performing the refinement
step in that area); (iii) the error remaining in the refinement region at the end
of the process. By restricting the maximum depth of the trees in the preview
stage we can control the type-(i) error, ensuring that it does not exceed the
error rate in (8). We start by defining fJ , a coarse approximation of f up to
resolution J . Consider the partition of [0, 1]d into 2dJ identical hypercubes and
denote this partition by πJ . Note that this partition can also be described by a
RDP, where all the leafs are at depth J . Define fJ : [0, 1]d → R as

fJ(x) =
1

2dJ
∑
A∈πj

(∫
A

f(t)dt
)

1A(x).

Note that fJ is identical to f “away” from the boundary, but in the vicinity of
the boundary there is some averaging. We have the following key Lemma.

Lemma 1. Let f̂p be the complexity regularized estimator of the preview step,
using n′ = n/2 samples. Then

E[‖f̂p − fJ‖] ≤ C
2(d−1)J log(n′)

n′
,

for a suitable C > 0 and all n′ > 2.
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Lemma 1 characterizes the behavior of the final estimate “away” from the
boundary, since f and fJ are identical in that region. So the above error bound
controls the type-(i) error.

Type-(ii) error corresponds to the situations when a part of the boundary
was not detected in the preview step. This can happen because of the inherent
randomness of the noise and sampling distribution, or because the boundary is
somewhat aligned with the dyadic splits, like in Figure 7(b). The latter can be
a problem and this is why one needs to perform d + 1 preview estimates over
shifted partitions. If the boundary is cusp-free then it is guaranteed that one of
those preview estimators is going to “feel” the boundary since it is not aligned
with the corresponding partition. A piece of the boundary region is not refined
if it is not detected in all the shifted partition estimators. The worst-case error
can be shown not to exceed C2(d−1)J log(n′)/n′, for some C > 0, therefore
failure to detect the boundary has the same contribution for the total error as
the type-(i) error. The proof of this fact is detailed in [20].

Finally, analysis of type-(iii) error is relatively easy. Nonetheless one needs
to make sure that the size of the region that needs to be refined is not too
large, since in that case the density of samples in the refinement step might be
not be sufficient to improve on passive methods. In other words, one needs to
make sure that in the preview step not much more than the boundary region is
detected. Let R be the set of cells that need to be re-sampled in the refinement
step. One has to guarantee that, with high probability the number of boundary
cells detected in the preview step (denoted by |R|) is on the order of 2(d−1)J .
The following Lemma [20] provides an affirmative answer.

Lemma 2. Let |R| be the number of cells detected in the preview step, that
possibly contain the boundary (and therefore are going to be re-sampled in the
refinement step). Then

Pr(|R| > C2(d−1)J) ≤ 1/n,

for C > 0 and n sufficiently large.

In the regions that are going to be refined, that is, the regions in R, we
are going to collect further samples and apply the passive estimation strategy
described in (4). As shown in the Lemma 2 we can assume that there are
O(2(d−1)J) elements in R (with high probability). We collect a total of L ≡
n/(2|R|) samples in each element of R. The error incurred by f̂r, the refinement
estimator, over each one of the elements of R is upper-bounded by

C

(
logL
L

)1/d

2−dJ ,

where C > 0 comes from (5), and 2−dJ is just the volume of each element of R.
Therefore overall error contribution of the refinement step is upper-bounded by

C

(
logL
L

)1/d

2−dJ |R|.
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To compute the total error incurred by f̂active, our proposed active learn-
ing estimator, we just have to sum the contributions of (i), (ii) and (iii), and
therefore we get

E
[
‖f̂active − f‖2

]
≤ C

(
logL
L

)1/d

2−dJ |R|+ C ′
2(d−1)J log n

n
,

with C,C ′ > 0. Assuming now that |R| = O(2(d−1)J) we can balance the two
terms in the above expression by choosing

J =
⌈

d− 1
(d− 1)2 + d

log(n/ log(n))
⌉
,

yielding the desired result. �

4 Final Remarks and Open Questions

The results presented in this chapter show that for certain scenarios active
learning attains provable gains over the classical passive approaches, even if ob-
servation uncertainty is present. Active learning is intuitively appealing, and
finds applications for many practical problems, for example in imaging tech-
niques, some of them described here. Despite these benefits, the analysis of
such active methods is quite challenging due to the existence of feedback in the
measurement process. This creates statistical dependence in the observations
(recall that now the sample locations are coupled with all the observations made
in the past), precluding the use of the usual analysis tools, such as concentra-
tion inequalities and laws of large numbers, that require independence (or quasi
independence) to be applicable. The piecewise constant function class studied
provides a non-trivial canonical example that illustrates under what conditions
one might expect the adaptive sampling framework to yield a performance im-
provement over more traditional passive sampling techniques. The algorithm
presented here for actively learning members of the piecewise constant class
demonstrates the possibilities of active learning in more general settings. A
natural extension of this function class is the piecewise smooth class, whose
element are Hölder smooth functions3 with smoothness parameter α. For this
class of functions we conjecture that the best attainable performance under as-
sumptions (A1.2) and (A2.2) is O(max{n−1/(d−1), n−2α/(2α+d)}). This is quite
intuitive, since it is known that adaptive sampling is not effective for learning
smooth functions [11]. Constructing a two-step algorithm to learn such func-
tions is relatively simple and it has been done in the context of field estimation

3A function f : [0, 1]d → R is Hölder smooth around x if it has continuous partial deriva-
tives up to order k = bαc at point x and

∃ε > 0 : ∀ z ∈ [0, 1]d : ‖z − x‖ < ε ⇒ |f(z)− Px(z)| ≤ L‖z − x‖α,

where L,α > 0, and Px(·) denotes the order k Taylor polynomial approximation of f expanded
around x, and k = bαc is the maximal integer such that k < α.
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using wireless sensor networks [21]. The key modification is that now one needs
to decorate the estimator RDPs with polynomials instead of constants. Despite
its simplicity this algorithm is very hard to analyze (to be specific, it is difficult
to generalize Lemma 1 in the proof).

Under the selective sampling framework there are even more open problems,
that have recently spawned much interest. It is a known fact that most existing
active learning algorithms tend to be too greedy: They work well when the
number of collected samples/examples is small, but the performance quickly
degrades as that number increases, leading to results that are worse than when
using classical passive learning techniques. This creates some fertile ground
for both practitioners and theoretical researchers, and an interesting interplay
between the two.
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