Lecture 9: Errors Bounds in Countably Infinite Spaces

1 Introduction

In the last lecture, we studied bounds of the following form: for any $\delta > 0$, with probability at least $1 - \delta$.

$$R(f) \leq \hat{R}_n(f) + \sqrt{\frac{\log |\mathcal{F}| + \log \left(\frac{1}{\delta} \right)}{2n}}, \quad \forall f \in \mathcal{F}$$

which led to upper bounds on the estimation error of the form

$$E[R(\hat{f}_n)] - \min_{f \in \mathcal{F}} R(f) \leq \sqrt{\frac{\log |\mathcal{F}| + \log(n) + 2}{n}}$$

The key assumptions made in deriving the error bounds were:

(i) bounded loss function
(ii) finite collection of candidate functions

The bounds are valid for every P_{XY} and are called distribution-free.

2 Deriving Bounds for Countably Infinite Spaces

In this lecture we will generalize the previous results in a powerful way by developing bounds applicable to possibly infinite collections of candidates. To start let us suppose that \mathcal{F} is a countable, possibly infinite, collection of candidate functions. Assign a positive number $c(f)$ to each $f \in \mathcal{F}$, such that

$$\sum_{f \in \mathcal{F}} e^{-c(f)} < \infty$$

The numbers $c(f)$ can be interpreted as

(i) measures of complexity
(ii) $-\log$ of prior probabilities
(iii) codelengths

In particular, if $P(f)$ is the prior probability of f then

$$e^{-(-\log P(f))} = P(f)$$

so $c(f) \equiv -\log P(f)$ produces

$$\sum_{f \in \mathcal{F}} e^{-c(f)} = \sum_{f \in \mathcal{F}} P(f) = 1$$

Now recall Hoeffding’s inequality. For each f and every $\epsilon > 0$

$$P \left(R(f) - \hat{R}_n(f) \geq \epsilon \right) \leq e^{-2\epsilon^2 c(f)}$$

or for every $\delta > 0$

$$P \left(R(f) - \hat{R}_n(f) \geq \sqrt{\frac{\log \left(\frac{1}{\delta} \right)}{2n}} \right) \leq \delta$$

1
Suppose $\delta > 0$ is specified. Using the values $c(f)$ for $f \in \mathcal{F}$, define

$$\delta(f) = e^{-c(f)}\delta$$

Then we have

$$P \left(R(f) - \hat{R}_n(f) \geq \sqrt{\frac{\log \left(\frac{1}{\delta(f)} \right)}{2n}} \right) \leq \delta(f)$$

Furthermore we can apply the union bound as follows

$$P \left(\sup_{f \in \mathcal{F}} \left\{ R(f) - \hat{R}_n(f) - \sqrt{\frac{\log(1/\delta(f))}{2n}} \right\} \geq 0 \right) \leq \sum_{f \in \mathcal{F}} P \left(R(f) - \hat{R}_n(f) \geq \sqrt{\frac{\log \left(\frac{1}{\delta(f)} \right)}{2n}} \right)$$

$$\leq \sum_{f \in \mathcal{F}} \delta(f) = \sum_{f \in \mathcal{F}} e^{-c(f)}\delta = \delta$$

So for any $\delta > 0$ with probability at least $1 - \delta$, we have that $\forall f \in \mathcal{F}$

$$R(f) \leq \hat{R}_n(f) + \sqrt{\frac{\log \left(\frac{1}{\delta(f)} \right)}{2n}}$$

$$= \hat{R}_n(f) + \sqrt{\frac{c(f) + \log \left(\frac{1}{\delta} \right)}{2n}}$$

Special Case

Suppose \mathcal{F} is finite and $c(f) = \log |\mathcal{F}|$ $\forall f \in \mathcal{F}$. Then

$$\sum_{f \in \mathcal{F}} e^{-c(f)} = \sum_{f \in \mathcal{F}} e^{-\log |\mathcal{F}|} = \sum_{f \in \mathcal{F}} \frac{1}{|\mathcal{F}|} = 1$$

and

$$\delta(f) = \frac{\delta}{|\mathcal{F}|}$$

which implies that for any $\delta > 0$ with probability at least $1 - \delta$, we have

$$R(f) \leq \hat{R}_n(f) + \sqrt{\frac{\log |\mathcal{F}| + \log \left(\frac{1}{\delta} \right)}{2n}}$$

$\forall f \in \mathcal{F}$

Note that this is precisely the bound we derived in the last lecture.
Choosing $c(f)$

The generalized bounds allow us to handle countably infinite collections of candidate functions, but we require that

$$\sum_{f \in F} e^{-c(f)} < \infty$$

Of course, if $c(f) = -\log p(f)$ where $p(f)$ is a proper prior probability distribution then we have

$$\sum_{f \in F} e^{-c(f)} = 1$$

However, it may be difficult to design a probability distribution over an infinite class of candidates. The coding perspective provides a very practical means to this end.

Assume that we have assigned a uniquely decodable binary code to each $f \in F$, and let $c(f)$ denote the code length for f. That is, the code for f is $c(f)$ bits long. A very useful class of uniquely decodable codes are called **prefix codes**.

Definition 1 A code is called a **prefix code** if no codeword is a prefix of any other codeword.

Example 1 (From Cover & Thomas ’91)

Consider an alphabet of symbols, say $A, B, C, \text{ and } D$ and the codebooks below

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Singular Codebook</th>
<th>Nonsingular But Not Uniquely Decodable</th>
<th>Uniquely Decodable But Not a Prefix Code</th>
<th>Prefix Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>010</td>
<td>00</td>
<td>10</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>01</td>
<td>11</td>
<td>110</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>10</td>
<td>110</td>
<td>1110</td>
</tr>
</tbody>
</table>

In the singular codebook we assign the same codeword to each symbol - a system that is obviously flawed! In the second case, the codes are not singular but the codeword 010 could represent B or CA or AD. Hence it is not a uniquely decodable codebook.

The third and fourth cases are both examples of uniquely decodable codebooks, but the fourth has the added feature that no codeword is a prefix of another. Prefix codes can be decoded from left to right since each codeword is “self-punctuating” - in this case with a zero to indicate the end of each word.

To design a uniquely decodable codebook in general is as challenging as the problem of selecting $c(f)$ to satisfy

$$\sum_{f \in F} e^{-c(f)} < \infty$$

However, prefix codes can often be easily designed or specified and they are inherently decodable. Moreover, prefix codes satisfy an important inequality called the **Kraft Inequality**.
3 The Kraft Inequality

For any binary prefix code, the codeword lengths $c_1, c_2, ...$ satisfy

$$\sum_{i=1}^{\infty} 2^{-c_i} \leq 1$$

Conversely, given any $c_1, c_2, ...$ satisfying the inequality above we can construct a prefix code with these codeword lengths. We will prove this result a bit later, but now let’s see how this is useful in our learning problem.

Assume that we have assigned a binary prefix codeword to each $f \in \mathcal{F}$, and let $c(f)$ denote the bit-length of the codeword for f. Set $\delta(f) = 2^{-c(f)}\delta$. Then

$$P \left(\bigcup_{f \in \mathcal{F}} R(f) - \hat{R}_n(f) \geq \frac{\log \left(\frac{1}{\delta(f)} \right)}{2n} \right) \leq \sum_{f \in \mathcal{F}} P \left(R(f) - \hat{R}_n(f) \geq \frac{\log \left(\frac{1}{\delta(f)} \right)}{2n} \right) $$

$$\leq \sum_{f \in \mathcal{F}} \delta(f) = \sum_{f \in \mathcal{F}} 2^{-c(f)}\delta = \delta$$

This implies that for any $\delta > 0$ with probability at least $1 - \delta$ we have $\forall f \in \mathcal{F}$

$$R(f) \leq \hat{R}_n(f) + \sqrt{\frac{\log \left(\frac{1}{\delta(f)} \right)}{2n}}$$

$$= \hat{R}_n(f) + \sqrt{\frac{c(f) \log 2 + \log \left(\frac{1}{\delta} \right)}{2n}}$$

Application

Let $\mathcal{F}_1, \mathcal{F}_2, ...$ be a sequence of finite sets of candidate functions with $|\mathcal{F}_1| < |\mathcal{F}_2| < ...$. We can design prefix codes as follows. Use the codes 0, 10, 110, 1110, ... to encode the subscript i in $|\mathcal{F}_i|$. For each class $|\mathcal{F}_i|$, construct a set of binary codewords of length $|\log_2 |\mathcal{F}_i||$ to uniquely encode each function in \mathcal{F}_i. Then, encode any given function f by first using the code for i corresponding to the smallest \mathcal{F}_i that f belongs to, followed by the length $|\log_2 |\mathcal{F}_i||$ codeword for $f \in \mathcal{F}_i$. This is a prefix code.
Example 2 Histogram Classifiers

Let \(X = \{0,1\}^p \), \(Y = \{0,1\} \). Let \(\mathcal{F}_k \), \(k = 1, 2, \ldots \) denote the collection of histogram classification rules with \(k \) equal volume bins. We can use the following codebook for the index \(k \)

<table>
<thead>
<tr>
<th>(k)</th>
<th>Prefix Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>110</td>
</tr>
<tr>
<td>4</td>
<td>1110</td>
</tr>
<tr>
<td>\ldots</td>
<td>\ldots</td>
</tr>
</tbody>
</table>

And follow this codeword with \(k = \log_2 |\mathcal{F}_k| \) bits to indicate which of the \(2^k \) possible histogram rules is under consideration. Thus for any \(f \in \mathcal{F}_k \) for some \(k \geq 1 \) there is a prefix code of length

\[
c(f) = k + k = 2k \quad \text{bits}
\]

It follows that \(\forall f \in \bigcup_{k \geq 1} \mathcal{F}_k \) and \(\forall \delta > 0 \), with probability at least \(1 - \delta \)

\[
R(f) \leq \hat{R}_n(f) + \sqrt{\frac{2k_f \log 2 + \log \left(\frac{1}{\delta} \right)}{2n}}
\]

where \(k_f \) is the number of bins in histogram corresponding to \(f \). Contrast with the bound we had for the class of \(m \) bin histograms alone:

\(\forall f \in \mathcal{F}_m \) and \(\forall \delta > 0 \), with probability \(\geq 1 - \delta \)

\[
R(f) \leq \hat{R}_n(f) + \sqrt{\frac{m \log 2 + \log \left(\frac{1}{\delta} \right)}{2n}}
\]

Notice the bound for all histograms rules is almost as good as the bound for on only the \(m \)-bin rules. That is, when \(k_f = m \) the bounds are within a factor of \(\sqrt{2} \). On the other hand, the new bound is a big improvement since it also gives us a guide for selecting the number of bins.
Proof of the Kraft Inequality

We will prove that for any binary prefix code, the codeword lengths \(c_1, c_2, \ldots \) satisfy \(\sum_{k \geq 1} 2^{-c_k} \leq 1 \). The converse is easy to prove also, but it not central to our purposes here (for a proof, see Cover & Thomas ’91). Consider a binary tree like the one shown below.

![Binary Tree Diagram]

The sequence of bit values leading from the root to a leaf of the tree represents a codeword. The prefix condition implies that no codeword is a descendant of any other codeword in the tree. Let \(c_{\text{max}} \) be the length of the longest codeword (also the number of branches to the deepest leaf) in the tree.

Consider a leaf \(i \) in the tree at level \(c_i \). This leaf would have \(2^{c_{\text{max}} - c_i} \) descendants at level \(c_{\text{max}} \). Furthermore, for each leaf the set of possible descendants at level \(c_{\text{max}} \) is disjoint (since no codeword can be a prefix of another). Therefore, since the total number of possible leaves at level \(c_{\text{max}} \) is \(2^{c_{\text{max}}} \), we have

\[
\sum_{i \in \text{leaves}} 2^{c_{\text{max}} - c_i} \leq 2^{c_{\text{max}}} \quad \Rightarrow \quad \sum_{i \in \text{leaves}} 2^{-c_i} \leq 1
\]

which proves the case when the number of codewords is finite.

Suppose now that we have a countably infinite number of codewords. Let \(b_1 \ b_2 \ldots \ b_{c_i} \) be the \(i^{th} \) codeword and let

\[
r_i = \sum_{j=i}^{c_i} b_j 2^{-j}
\]

be the real number corresponding to the binary expansion of the codeword. We can associate the interval \([r_i, r_i + 2^{-c_i}]\) with the \(i^{th} \) codeword. This is the set of all real numbers whose binary expansion begins with \(b_1 \ b_2 \ldots \ b_{c_i} \). Since this is a subinterval of \([0,1]\), and all such subintervals corresponding to prefix codewords are disjoint, the sum of their lengths must be less than or equal to 1. This proves the case where the number of codewords is infinite.